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Abstract. Motivated by current interest in strongly correlated quasi-one-dimensional (1D) Luttinger liq-
uids subject to axial confinement, we present a novel density-functional study of few-electron systems
confined by power-low external potentials inside a short portion of a thin quantum wire. The theory
employs the 1D homogeneous Coulomb liquid as the reference system for a Kohn-Sham treatment and
transfers the Luttinger ground-state correlations to the inhomogeneous electron system by means of a suit-
able local-density approximation (LDA) to the exchange-correlation energy functional. We show that such
1D-adapted LDA is appropriate for fluid-like states at weak coupling, but fails to account for the transition
to a “Wigner molecules” regime of electron localization as observed in thin quantum wires at very strong
coupling. A detailed analyzes is given for the two-electron problem under axial harmonic confinement.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems
– 71.15.Mb Density functional theory, local density approximation, gradient and other corrections

1 Introduction

One-dimensional (1D) quantum many-body systems of
interacting fermions have attracted theoretical and ex-
perimental interest for more than fifty years [1]. Con-
trary to what happens in higher dimensionality, these
systems cannot be described by the conventional Landau
theory of normal Fermi liquids [2] due to a subtle inter-
play between topology and interactions. The appropriate
paradigm for 1D interacting fermions is instead provided
by the Luttinger-liquid concept introduced by Haldane in
the early eighties [3].

Strongly correlated 1D systems that are nowadays
available for experiment range from ultra-cold atomic
gases [4] to electrons in single-wall carbon nanotubes [5]
and in semiconductor quantum wires [6,7]. Chiral
Luttinger liquids at fractional quantum-Hall edges [8] also
provide an example of 1D electronic conductors and have
been the subject of intense experimental and theoretical
studies [9,10]. In many experimental situations the trans-
lational invariance of the fluid is broken by the presence
of inhomogeneous external fields. Examples are the con-
fining potential provided by magnetic and optical traps
for ultra-cold gases [4] and the barriers at the end of a
quantum wire segment in cleaved edge overgrowth sam-
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ples [7]. These strong perturbations induce the appearance
of a new length scale and can cause novel physical behav-
iors relative to the corresponding unperturbed, Galileian-
invariant model system.

Of special relevance to the present work are the stud-
ies carried out in reference [7], where momentum-resolved
tunneling experiments between two closely situated par-
allel quantum wires have been carried out to probe the
phenomenon of spin-charge separation in a Luttinger liq-
uid [11]. In these experiments a top gate is used to deplete
the central portion of one of the two wires, thus locally
decreasing the electron density, and a dramatic transition
is observed when the electron density is reduced below a
critical value. There is strong evidence that in this regime
the electrons in the depleted wire segment are separated
by barriers from the rest of the wire [12], and it is sug-
gested that the electrons in the segment are localized by
the combined effect of the barriers and of the electron-
electron interactions. The magnetic-field dependence of
the tunneling conductance for a field perpendicular to the
plane of the wires provides a direct probe of the many-
body wavefunction of the localized electrons [12,13], of-
fering the possibility to investigate systematically the role
of interactions in creating exotic phases of matter in re-
duced dimensionality. In fact, the experimental parame-
ters in reference [7] are such that the electrons in the wire
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segment are in the strong-coupling regime. An exact di-
agonalization study was carried out in reference [12] for a
number N of electrons up to 4.

A powerful theoretical tool to study the interplay be-
tween interactions and inhomogeneity from external fields
of arbitrary shape is density-functional theory (DFT),
based on the Hohenberg-Kohn theorem and the Kohn-
Sham mapping [14]. Many-body effects enter DFT via
the exchange-correlation (xc) functional, which is often
treated by a local-density approximation (LDA) requir-
ing as input the xc energy of a homogeneous reference
fluid. For 2D and 3D electronic systems the underlying
reference fluid usually is the homogeneous electron liquid
(EL), whose xc energy is known to a high degree of numer-
ical precision from quantum Monte Carlo (QMC) stud-
ies [15]. Several density-functional schemes have also been
proposed for strongly correlated 1D systems [16–20] and
in the case of the 1D Luttinger liquid with repulsive con-
tact interactions, where the xc energy of the homogeneous
fluid is exactly known from Bethe-Ansatz solutions, tests
of the LDA have been carried out against QMC data [20].

In the present work we test a novel LDA xc functional
to treat few-electron systems confined by power-law po-
tentials inside a segment of a quantum wire. The homoge-
neous reference system that we adopt is the 1D EL with
Coulomb interactions, previously studied by a number of
authors [21–24] and very recently evaluated by a novel
lattice-regularized Diffusion Monte Carlo method [25].
The correlation energy determined in this latter study is
used in our LDA calculations, whereas earlier DFT-based
studies of 1D “quantum dots” [26] have used the correla-
tion energy of a 2D EL. While such choice can be justified
for thick wires, a 1D reference fluid is more appropriate to
treat inhomogeneous electron systems in ultrathin wires
of our present interest (see also the discussion given in
Ref. [24]). We nevertheless find that the 1D-adopted LDA
is unable to describe the transition of the confined elec-
trons from a fluid-like state to the localized “Wigner-like”
state that is observed to occur as the coupling strength is
increased (for similar conclusions in 2D see Ref. [27]). In
essence, the confining potential pins the phase of density
oscillations in much the same way as an impurity inserted
into the infinitely extended 1D fluid does in producing
Friedel oscillations in the surrounding electron density.
However, a cross-over from a 2kF to a 4kF periodicity oc-
curs in these oscillations with increasing coupling in the
Luttinger liquid. We proceed in the later part of the pa-
per to give a detailed analysis of this transition in the case
of two electrons subject to axial harmonic confinement in
a wire segment. From previous work on the two-particle
problem with contact repulsive interactions [28] we pre-
sume that a local spin-density approximation could help
in transcending the limitations of the LDA.

The outline of the paper is briefly as follows. In Sec-
tion 2 we introduce the Hamiltonian that we use for the
system of present interest, and in Section 3 we describe
our self-consistent DFT approach and the LDA that we
employ for the xc potential. In Section 4 we report and dis-
cuss our main results for the fluid state at weak coupling,

while in Section 5 we focus on the two-electron problem.
Finally, Section 6 summarizes our main conclusions.

2 The model

We consider N electrons of band mass m confined inside
an axially symmetric quantum wire. The transverse con-
finement is provided by a tight harmonic potential with
angular frequency ω⊥,

V⊥(x, y) =
1
2
mω2

⊥(x2 + y2). (1)

The electrons are also subject to a longitudinal poten-
tial Vext(z) along the wire axis. In the 1D limit (see
below) the transverse motion can be taken as frozen
into the ground state of the 2D oscillator, ϕ(r⊥) =
(2πb2)−1/2 exp [−r2

⊥/(4b2)] with b2 = �/(2mω⊥). The pa-
rameter b thus measures the transverse wire radius. On
integrating out the transverse degrees of freedom one ends
up with the effective 1D Hamiltonian

H = − �
2

2m

∑

i

∂2

∂z2
i

+
1
2

∑

i�=j

vb(|zi−zj|)+
∑

i

Vext(zi), (2)

where

vb(z) =
√

π

2
e2

κb
exp [z2/(4b2)]erfc[z/(2b)] (3)

is the renormalized interelectron potential [23]. Here κ is
a background dielectric constant and erfc(x) is the com-
plementary error function [29]. It is easy to check that
the potential in equation (3) becomes purely Coulombic
at large distance [30], vb(z) → e2/(κ|z|) for |z| → ∞.
At zero interelectron separation the electron-electron po-
tential goes to a positive constant. Equation (3) yields a
linear approach to a constant, the cusp being an artifact
of wavefunction factorization [23].

The last term in equation (2) gives the coupling of
the electrons to the axial external potential and, following
Tserkovnyak et al. [6], we consider power-law potentials
of the type

Vext(z) = Vβ |z|β (4)

with β ≥ 2 and Vβ = 2β+1
�

2/(mL2+β). For β = 2 the
confinement is harmonic, Vext(z) = mω2

‖z
2/2 with angular

frequency ω‖ = 4�/(mL2), while Vext(z) becomes a square
well of size L in the limit β → +∞.

Choosing L/2 as the unit of length and 2�
2/(mL2) as

the unit of energy, the Hamiltonian becomes

H = −
∑

i

∂2

∂x2
i

+
λ

2

∑

i�=j

F(|xi − xj |) +
∑

i

|xi|β (5)

with x = 2z/L, λ =
√

πL̄2/(4b̄) and

F(x) = exp [L̄2x2/(16b̄2)]erfc[L̄x/(4b̄)]. (6)
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Here L̄ = L/aB and b̄ = b/aB, aB = �
2κ/(me2) being

the effective Bohr radius. We see from equation (5) that
the physical properties of the system are determined by
the four dimensionless parameters N, b̄, β, and L̄. Note
that while F(x) is controlled only by the ratio L̄/b̄, the
parameter λ contains two powers of L̄ and one power of
b̄. Electron-electron interactions are expected to become
dominant in ultrathin wires with b̄ � 1 and for weak con-
finements (L̄ � 1). In the experiments of reference [7]
(with aB � 9.8 nm for GaAs) b̄ ≈ 1 and L̄ ≈ 100, so that
the electrons are in a strong-coupling regime (λ ≈ 4×103).
In fact, the electron-electron coupling is also influenced by
the exponent β, which determines the spill-out of the elec-
tron density and hence the system diluteness. For given b̄
and L̄, harder boundaries (larger β) imply a more efficient
confinement (i.e. higher average density) and thus reduce
the role of the many-body interactions.

3 Density-functional approach

Within the Kohn-Sham version of DFT the ground-state
density nGS(z) is calculated by self-consistently solv-
ing the Kohn-Sham equations for single-particle orbitals
ϕα(z),

[
− �

2

2m

d2

dz2
+ VKS[nGS](z)

]
ϕα(z) = εαϕα(z) (7)

with VKS(z) = vH(z) + vxc(z) + Vext(z), together with the
closure

nGS(z) =
∑

α

Γα |ϕα(z)|2 . (8)

Here the sum runs over the occupied orbitals and the de-
generacy factors Γα satisfy the sum rule

∑
α Γα = N .

The first term in the effective Kohn-Sham potential is the
Hartree term

vH[nGS](z) =
∫ +∞

−∞
dz′vb(|z − z′|)nGS(z′), (9)

while the second term is the xc potential, defined as the
functional derivative of the xc energy Exc[n] evaluated at
the ground-state density profile, vxc = δExc[n]/δn(z)|GS.
The total ground-state energy of the system is given by

EGS =
∑

α

Γαεα −
∫ +∞

−∞
dz vxc[nGS](z)nGS(z)

−1
2

∫ +∞

−∞
dz

∫ +∞

−∞
dz′vb(|z − z′|)nGS(z)nGS(z′)

+Exc[nGS]. (10)

Equations (7) and (8) provide a formally exact scheme to
calculate nGS(z) and EGS, but Exc and vxc need to be
approximated.

As mentioned above in Section 1, in this work we have
chosen the 1D EL, described by the Hamiltonian (2) with
Vext(z) = 0, as the homogeneous reference fluid. In the

thermodynamic limit and in the absence of spin polar-
ization this model is described by two dimensionless pa-
rameters only, rs and b̄. Here rs = (2naB)−1 is the usual
Wigner-Seitz dimensionless parameter, defined in terms of
the average 1D density n. We adopt the LDA functional

Exc[n] → ELDA
xc [n] =

∫ +∞

−∞
dzn(z)εhom

xc (rs(z)) (11)

with rs(z) = [2nGS(z)aB]−1 and εhom
xc (rs) = εhom

x (rs) +
εhom
c (rs). The exchange energy εhom

x of the 1D EL
(per particle) is calculated from

εhom
x (rs) =

1
2

∫ +∞

−∞

dq

2π
vb(q)[S0(q) − 1], (12)

where vb(q) = (e2/κ) exp (q2b2)E1(q2b2) is the Fourier
transform of the interaction potential, with E1(x) being
the exponential integral [29], and S0(q) is the structure
factor of the noninteracting gas (S0(q) = q/(2kF) for
q ≤ 2kF and 1 elsewhere). The correlation energy εhom

c de-
termined by Casula et al. [25] is given by the parametriza-
tion formula

εhom
c (rs) = − rs

A + Brγ
s + Cr2

s

ln (1 + Drs + Erγ′
s ) , (13)

in units of the effective Rydberg e2/(2κaB). The values
of the seven parameters in this expression are reported in
Table IV of reference [25] for several values of b̄ in the
range 0.1 ≤ b̄ ≤ 4. As discussed in reference [25], equa-
tion (13) incorporates the exactly-known weak-coupling
limit (rs → 0) and fits very well their numerical data in
the range 0.05 ≤ rs ≤ 50. Finally, the LDA xc potential
is calculated from equation (11) as

vLDA
xc [nGS](z) =

δELDA
xc [n]
δn

∣∣∣∣
GS

(14)

=
(

1 − rs
∂

∂rs

)
εhom
xc (rs)

∣∣∣∣
rs→[2nGS(z)aB]−1

.

We have calculated numerically the derivative of the ex-
change energy as

∂εhom
x (rs)
∂rs

= − 1
2r2

saB

∫ 1

0

dq̄ (q̄ − 1)vb(q̄)

+
1

2rsaB

∫ 1

0

dq̄ (q̄ − 1)
∂vb(q̄)
∂rs

, (15)

where q̄ = q/(2kF). Notice that vb(q̄) is rs-dependent.

4 Numerical results for the fluid state

We have solved numerically the self-consistent scheme
given by equations (7–9) using the LDA xc potential in
equation (14). Our main numerical results for the density
profile nGS(z) of even numbers of electrons in a weak-
coupling regime are summarized in Figures 1–4.
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Fig. 1. Top panel: density profile nGS(z) (in units of 2/L) as
a function of 2z/L for N = 4, 6, and 8 electrons confined by
an external potential with β = 2 and L = aB in a thin wire of
radius b = 0.1aB. Bottom panel: Same as in the top panel but
for β = 6.

In the homogeneous limit the 1D hypothesis (i.e. a sin-
gle transverse subband occupied) requires that the Fermi
energy εF = �

2k2
F/(2m), with kF = πn/2 = π/(4rsaB), be

smaller than the transverse energy �ω⊥. This translates
into the inequality rs > πb̄/4, involving rs and the wire
radius b in units of the Bohr radius. In our calculations
we have checked that the minimum rs(z) defined by the
local density nGS(z) satisfies the 1D hypothesis for each
set (N, b̄, β, L̄) of parameters.

In Figure 1 we report the density profiles for N = 4, 6,
and 8 electrons in the case of a thin wire with radius
b = 0.1 aB and a confinement with L = aB, corresponding
to λ ≈ 4. We see from this figure that for these system
parameters the ground state is fluid-like with N/2 distinct
maxima, corresponding to Friedel-like oscillations with
wave number 2keff

F where the effective Fermi wavenum-
ber keff

F = πñ/2 is determined by the average density ñ in
the bulk of the trap. In Figure 2 we show the evolution of
the density profile with increasing L for N = 6 electrons
confined in a thin wire of radius b = 0.1 aB, and in Fig-
ure 3 we show the evolution of the density profile with in-
creasing b for fixed L = 2aB. The role of electron-electron
interactions becomes more important with increasing L or
decreasing b (for L = 6aB and b = 0.1aB for example, we
have λ ≈ 160) and leads to a decrease in the amplitude
of the Friedel-like oscillations and to a broadening of the
density profile.
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Fig. 2. Top panel: density profile nGS(z) (in units of 2/L) as
a function of 2z/L for N = 6 electrons confined by an external
potential with β = 2 and L/aB = 1, 2 and 3 in a thin wire of
radius b = 0.1aB. Bottom panel: Same as in the top panel but
for β = 6 and L/aB = 2, 4 and 6. Results for the noninteracting
system are also shown in both panels for comparison.
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Fig. 3. Density profile nGS(z) (in units of 2/L) as a function
of 2z/L for N = 6 electrons confined by an external potential
with β = 2 and L = 2aB, for two values of the wire radius.
Results for the noninteracting system have also been included
for comparison.

In Figure 4 we report the dependence of the ground-
state energy EGS and of the stiffness ∂2EGS/∂N2 =
[EGS(N + 2) + EGS(N − 2) − 2EGS(N)]/4 on the elec-
tron number N , for different types of confining poten-
tial. The behavior of these quantities is easily understood
in the noninteracting case. In harmonic confinement the
single-particle spectrum is given by εi = �ω‖(i + 1/2)
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Fig. 4. Top panel: ground-state energy [per particle and in
units of 2�

2/(mL2)] as a function of the electron number N ≥ 2
for various values of β and b = 0.1aB. Filled symbols corre-
spond to the interacting case, empty symbols to noninteracting
case. For β = 2 we have chosen L = aB, while for β = +∞
L = 5aB. Bottom panel: thermodynamic stiffness ∂2EGS/∂N2

[in units of 2�
2/(mL2)] as a function of N for the same system

parameters as in the top panel. The lines are just guides for
the eye.

with i = 0, 1, 2, ... and thus the ground-state energy is
EGS(N) = 2

∑N/2−1
i=0 εi = �ω‖N2/4, implying a constant

stiffness ∂2EGS/∂N2 = �ω‖/2. In the case β = +∞, in-
stead, εi = �

2π2i2/(2mL2) with i = 1, 2, 3, ... and thus
EGS(N) = �

2π2N(N + 1)(N + 2)/(24mL2), implying a
linear stiffness ∂2EGS/∂N2 = �

2π2(N + 1)/(4mL2). We
are instead unable to calculate the addition energy [31]
(chemical potential) µ = EGS(N) − EGS(N − 1), as it re-
quires knowledge of the ground-state energy for systems
having odd numbers of electrons and hence a finite spin
polarization. The spin-polarization dependence of the cor-
relation energy of the 1D EL is presently not yet available.

Whereas the above results refer to a fluid-like weak-
coupling regime, one should expect real-space quasi-
ordering to set in at strong coupling, and this should be
signaled by the so-called “2kF → 4kF crossover” in the
wave number of Friedel oscillations. This cross-over is not
predicted by the LDA xc functional in equation (14). In
Section 5 we study in detail this crossover for N = 2
harmonically-trapped electrons, a problem which is easily
solvable numerically to any desired degree of accuracy (see
also the work of Szafran et al. [32]).
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Fig. 5. The effective potential V(zrel) [in units of 2�
2/(mL2)]

as a function of 2zrel/L for b = 0.1aB.

5 The two-particle problem and the failure
of the LDA at strong coupling

After a canonical transformation to centre-of-mass and
relative coordinates and momenta [Z = (z1 + z2)/2, P =
p1+p2 and zrel = z1−z2, p = (p1−p2)/2], the Hamiltonian
for two harmonically trapped electrons in a thin wire can
be written as H = HCM(Z, P ) + Hrel(zrel, p). Here, the
centre-of-mass Hamiltonian HCM = P 2/(2M)+Mω2

‖Z
2/2

describes a 1D harmonic oscillator of mass M = 2m, while
the relative-motion Hamiltonian Hrel = p2/m + V(zrel)
describes a particle of mass m/2 in the potential V(zrel) =
mω2

‖z
2
rel/4 + vb(zrel). This potential is plotted in Figure 5

for two values of the trap frequency ω‖ = 4�/(mL2).
In the spin-singlet case the spatial part of the ground-

state wavefunction is written as

ΨGS(z1, z2) = N exp (−Z2/a2
‖)ϕrel(zrel), (16)

where N is a normalization constant, a‖ =
√

�/(mω‖),
and ϕrel(zrel) is the symmetric ground-state wavefunction
for the relative-motion problem with energy εr, which
can be numerically found by solving the single-particle
Schrödinger equation

[
−�

2

m

d2

dz2
rel

+ V(zrel)
]

ϕrel(zrel) = εrϕrel(zrel). (17)

An illustration of |ΨGS(z, z′)|2 for two values of L̄ is re-
ported in Figure 6. The “molecular” nature of the ground
state is evident at strong coupling.

The ground-state density profile can be found from

nGS(z) =
∫ +∞

−∞
dz′ |ΨGS(z, z′)|2, (18)

where the normalization constant N is chosen according
to

∫ +∞
−∞ dz nGS(z) = 2. Numerical results are shown in

Figure 7 (left panels) in comparison with the LDA pro-
files. Note that the double-peak structure in |ΨGS(z, z′)|2
at weak coupling (left panel in Fig. 6) is lost in the cor-
responding ground-state density. While at weak coupling
(L = aB) the agreement between the exact result and the
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Fig. 6. Exact two-body wavefunction |ΨGS(z, z′)|2 [in units of (2/L)2] as a function of 2z/L and 2z′/L for N = 2 electrons
confined by a harmonic potential with L = aB (left panel) and L = 4aB (right panel) in a thin wire of radius b = 0.1aB.

LDA prediction is very satisfactory, at strong coupling
(L = 4aB) the LDA is unable to reproduce the formation
of a deep Coulomb hole yielding a density profile with a
broad maximum at the trap center.

One can also directly compare the LDA xc potential
in equation (14) with the exact one, which can be calcu-
lated from the exact density profile [33] as summarized
below. In the two-particle case there is only one Kohn-
Sham orbital ϕKS(z) =

√
nGS(z)/2, which satisfies the

Kohn-Sham equation
[
− �

2

2m

d2

dz2
+ VKS[nGS](z)

]
ϕKS(z) = εKSϕKS(z). (19)

Solving this equation for vxc we find

vxc[nGS](z) = εKS +
�

2

2mϕKS(z)
d2ϕKS(z)

dz2
− Vext(z)

−vH(z), (20)

or, more explicitly,

vxc[nGS](z) = εKS +
�

2

2m
√

nGS(z)
d2

√
nGS(z)
dz2

− Vext(z)

−
∫ +∞

−∞
dz′ vb(|z − z′|)nGS(z′). (21)

The exact Kohn-Sham eigenvalue εKS can be proven to
be equal to the energy εr of the relative motion. The
approximate Kohn-Sham eigenvalue, instead, differs from
εr: for example, for L = aB we find δ ≡ εLDA

KS − εr �
0.46 [2�

2/(mL2)].
In Figure 7 (right panels) we show a comparison be-

tween the LDA xc potential in equation (14), as obtained
at the end of the Kohn-Sham self-consistent procedure,
and the exact xc potential calculated from equation (21)
with the ground-state density from equation (18). Several
remarks are in order here. As it commonly happens, the
LDA potential has the wrong long-distance behavior: it
decays exponentially because the density does so, while
the exact xc potential decays like 1/|z|. Nevertheless, at
weak coupling the difference between the two potentials is

well approximated by the constant δ, in the region where
the density profile is different from zero, and this explains
the satisfactory agreement between the exact and the LDA
profiles. It is finally evident how in the strong-coupling
regime the LDA potential is instead very different from
the exact one and produces a density profile with a broad
flat maximum at the center. The reason for this quali-
tatively wrong prediction is twofold: (i) the Kohn-Sham
scheme for two electrons uses only one orbital, which is
nodeless because it corresponds to the lowest eigenvalue of
a 1D Schrödinger equation; and (ii) the LDA xc potential
follows locally the behavior of the ground-state density,
which is ∝|ϕKS(z)|2. In other words, the LDA xc poten-
tial does not contain the physical information on antifer-
romagnetic correlations, which is carried by the on-top
value of the antiparallel-spin pair correlation function.

An xc functional embodying the 2kF → 4kF crossover
and capable of describing inhomogeneous Luttinger sys-
tems at strong repulsive coupling is thus required. In
reference [28] we have proposed a simple xc functional
which is able to capture the tendency to antiferromag-
netic spin ordering. The idea consists in two steps: (i)
one adds an infinitesimal spin-symmetry-breaking field
to the Hamiltonian; and (ii) one resorts to a local spin-
density approximation (LSDA) within the framework
of spin-density functional theory. Exact-diagonalization
and configuration-interaction studies of 1D quantum
dots [32,34] have shown that, while for even number of
electrons the local spin polarization is everywhere zero in
the dot, one can still observe antiferromagnetic correla-
tions at strong coupling by looking at the spin-resolved
pair correlation functions. This suggests that an LSDA
approach may indeed prove useful at strong coupling. Un-
fortunately, a knowledge of the ground-state energy of the
homogeneous 1D EL in the situations with N↑ �= N↓ is
still lacking.

6 Conclusions

In summary, we have carried out a novel density-
functional study of a few isolated electrons at zero net
spin, confined by power-law external potentials inside a
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Fig. 7. Left panels: density profile nGS(z) (in units of 2/L) as a function of 2z/L for N = 2 electrons confined by a harmonic
potential with L = aB (top) and L = 4aB (bottom) in a thin wire of radius b = 0.1aB. The exact results (filled circles) are
compared with the LDA results (solid line). Right panels: the LDA xc potential from equation (14) (solid line) is compared
with the exact xc potential calculated from equation (21) (filled circles).

short portion of a thin semiconductor quantum wire. The
theory employs the quasi-one-dimensional homogeneous
electron liquid as the reference system and transfers its
ground-state correlations to the confined inhomogeneous
system through a local-density approximation to the ex-
change and correlation energy functional.

The local-density approximation gives good-quality re-
sults for the density profile in the liquid-like states of the
system at weak coupling, a precise test against exact re-
sults having been presented in the case of N = 2 electrons.
However, it fails to describe the emergence of electron lo-
calization into Wigner molecules at strong coupling. The
fact that strong-coupling antiferromagnetic correlations
are hidden in the inner-coordinates degrees of freedom,
as suggested by Szafran et al. [32], indicates that a local
spin-density approximation, or even non-local functionals
based on the spin-resolved pair correlation functions [35],
are needed. The class of density-functional schemes for
“strictly correlated” electronic systems recently proposed
by Perdew et al. [36] may also be useful in treating the
Wigner-molecule regime.

We are indebted to M. Casula for providing us with his QMC
data prior to publication. It is a pleasure to thank R. Asgari, K.

Capelle, P. Capuzzi, M. Governale, I. Tokatly, and G. Vignale
for several useful discussions.
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23. W. Häusler, L. Kecke, A.H. MacDonald, Phys. Rev. B 65,

085104 (2002)

24. M.M. Fogler, Phys. Rev. B 71, 161304(R) (2005); M.M.
Fogler, Phys. Rev. Lett. 94, 056405 (2005)

25. M. Casula, S. Sorella, G. Senatore, Phys. Rev. B 74,
245427 (2006)

26. S.M. Reiman, M. Koskinen, P.E. Lindelof, M. Manninen,
Physica E 2, 648 (1998); E. Räsänen, H. Saarikoski, V.N.
Stavrou, A. Harju, M.J. Puska, R.M. Nieminen, Phys. Rev.
B 67, 235307 (2003)

27. C. Yannouleas, U. Landman, Eur. Phys. J. D 16, 373
(2001); C. Yannouleas, U. Landman, Int. J. Quant. Chem.
90, 699 (2002)

28. S.H. Abedinpour, M. Polini, G. Xianlong, M.P. Tosi, Phys.
Rev. A 75, 015602 (2007)

29. M. Abramowitz, I.A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1972)

30. As discussed in references [12] and [13], in the tunneling
geometry used in the experiments of reference [7] the elec-
trons that are confined by Vext(z) inside a wire segment
are also affected by the presence of a second long wire
with much higher electron density, which leads to screen-
ing of the electron-electron interactions. Thus one should
cut off the long-range tail of vb(z) to make contact with
these experiments

31. T. Kleimann, M. Sassetti, B. Kramer, A. Yacoby, Phys.
Rev. B 62, 8144 (2000); T. Kleimann, F. Cavaliere, M.
Sassetti, B. Kramer, Phys. Rev. B 66, 165311 (2002)

32. S. Bednarek, T. Chwiej, J. Adamowski, B. Szafran, Phys.
Rev. B 67, 205316 (2003); B. Szafran, F.M. Peeters, S.
Bednarek, T. Chwiej, J. Adamowski, Phys. Rev. B 70,
035401 (2004)

33. P.M. Laufer, J.B. Krieger, Phys. Rev. A 33, 1480 (1986);
C. Filippi, C.J. Umrigar, M. Taut, J. Chem. Phys. 100,
1290 (1994)
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